Bats make mental maps using echolocation

Estimated read time 2 min read



The meandering, researchers suspect, was due to trouble the bats had with maintaining the steady path relying on echolocation alone. When they were detecting distinctive landmarks like a specific orchard, they corrected the course. Repeating the process eventually brought them to their roost.

But could this be landmark-based navigation? Or perhaps simple beaconing, where an animal locks onto something like a distant light and moves toward it?

The researchers argue in favor of cognitive acoustic maps. “I think if echolocation wasn’t such a limited sensory modality, we couldn’t reach a conclusion about the bats using cognitive acoustic maps,” Goldshtein says. The distance between landmarks the bats used to correct their flight path was significantly longer than echolocation’s sensing range. Yet they knew which direction the roost was relative to one landmark, even when the next landmark on the way was acoustically invisible. You can’t do that without having the area mapped.

“It would be really interesting to understand how other bats do that, to compare between species,” Goldshtein says. There are bats that fly over a thousand meters above the ground, so they simply can’t sense any landmarks using echolocation. Other species hunt over sea, which, as per this team’s simulations, would be just one huge low-entropy area. “We are just starting. That’s why I do not study only navigation but also housing, foraging, and other aspects of their behavior. I think we still don’t know enough about bats in general,” Goldshtein claims.

Science, 2024.  DOI: 10.1126/science.adn6269



Source link

You May Also Like

More From Author

+ There are no comments

Add yours